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Abstract
The triglyceride of heptanoate (C7 fatty acid), triheptanoin, is a tasteless oil used to treat rare
metabolic disorders in USA and France. Heptanoate is metabolized by β-oxidation to provide
propionyl-CoA, which after carboxylation can produce succinyl-CoA, resulting in anaplerosis –
the refilling of the tricarboxylic acid cycle. Heptanoate is also metabolized by the liver to the “C5
ketones”, β-ketopentanoate and/or β-hydroxypentanoate, which are released into the blood and
thought to enter the brain via monocarboxylate transporters. Oral triheptanoin has recently been
discovered to be reproducibly anticonvulsant in acute and chronic mouse seizures models.
However, current knowledge on alterations of brain metabolism after triheptanoin administration
and anaplerosis via propionyl-CoA carboxylation in the brain is limited. This review outlines
triheptanoin’s unique anticonvulsant profile and its clinical potential for the treatment of medically
refractory epilepsy. Anaplerosis as a therapeutic approach for the treatment of epilepsy is
discussed. More research is needed to elucidate the anticonvulsant mechanism of triheptanoin and
to reveal its clinical potential for the treatment of epilepsy and other disorders of the brain.

1. Introduction
Dysfunction of metabolic processes appears to play a major role in conditions that include
seizures as well as certain forms of epilepsy. This notion is corroborated by two main types
of observations. 1) Mutations in genes that are involved in energy and/or ATP metabolism
are associated with epileptic seizures, e.g. glucose transporter 1 (GLUT1) deficiency, but
also mutations of mitochondrial constituents. 2) Several manipulations of metabolic
pathways are efficacious in rodent seizure models and/or epilepsy patients. This includes the
ketogenic diet (as discussed in this supplement), fructose-1,6-bisphosphate in rat epilepsy
models (Lian et al., 2007; Lian et al., 2008) and 2-deoxy-D-glucose in certain rat and mouse
models (Garriga-Canut et al., 2006; Stafstrom et al., 2009). Triheptanoin is a medium chain
triglyceride containing three odd chain fatty acid heptanoate molecules. It is a clear tasteless
oil which can easily be added to any diet. Roe, Brunengraber and colleagues discovered
triheptanoin as an oral anaplerotic treatment for metabolic disorders (Roe et al., 2002;
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Brunengraber and Roe, 2006; Roe and Mochel, 2006). This sparked interest in its potential
for the treatment of epilepsy, resulting in the recent finding that triheptanoin feeding is
anticonvulsant in three mouse epilepsy models. In this review we discuss the current
knowledge of triheptanoin in terms of its anticonvulsant and metabolic effects and its
clinical potential in comparison to the ketogenic diet.

2. Triheptanoin’s anticonvulsant profile
At the time of writing this article, triheptanoin feeding as an anticonvulsant treatment in
rodents has only been evaluated by two laboratories. In 2008 it was described that short term
feeding of triheptanoin within a context of a ketogenic diet inhibited cortical spreading
depression in young rats (de Almeida Rabello Oliveira et al., 2008). The Borges’ laboratory
investigated the effect of oral triheptanoin in the context of a more regular “low fat” diet, a
composition largely based on the clinical studies by Roe. Given that in clinical studies up to
35% of the daily caloric intake is provided in the form of triheptanoin, standard rodent chow
was modified accordingly to include 170 ml of triheptanoin per kg rodent diet (Willis et al.,
2010). Other components of regular rodent chows, such as 150 g sucrose and some of the
complex carbohydrates and fats were omitted to accommodate the amount triheptanoin
added. Fed to mice, the dietary intake of protein, antioxidants, vitamins and minerals was
similar between standard versus triheptanoin diet. In metabolic cages, a 30 g mouse
consumed on average, 5 g of triheptanoin-containing diet per day, corresponding to a dose
of 0.85 ± 0.2 g triheptanoin per day (average and standard error of the mean for 4
experiments). In our initial experiments up to two weeks of triheptanoin feeding did not
induce reproducible anticonvulsant activity in acute mouse seizure models, such as the
fluorothyl, 6 Hz and pentylenetetrazole (PTZ) (i.v.) tests (Willis et al., unpublished). In
contrast, we found reproducible anticonvulsant effects after ≥ three weeks of feeding in one
acute and two chronic mouse seizure models in CD1 and CF1 mice, respectively. In the
maximal electroshock threshold test in CD1 mice, we recently found a small but
reproducible increase of the critical current at which 50% of mice seize (Willis et al.,
unpublished). We are currently investigating the minimum triheptanoin feeding amount and
time required for this effect. In the corneal kindling model we found a reproducible delay in
the kindling process in CF1 mice. This effect is similar to results found with low doses of
levetiracetam in the same model (Matagne et al., 2008) and valproate, phenobarbital and
lacosamide in the rat amygdala kindling model (Brandt et al., 2006; Silver et al., 1991).
Lastly, we used a second hit pentylenetetrazole (PTZ, i.v.) test in CF1 mice that were
subjected to pilocarpine-induced status epilepticus (PILO-SE). Mice and rats that experience
PILO-SE develop spontaneous seizures (Turski et al., 1984; Turski et al., 1983) and
increased sensitivity to PTZ. In our hands, there was no evidence of spontaneous seizures or
increased seizure threshold in mice that did not develop SE (no SE mice, Willis et al., 2010).
In two experiments, triheptanoin reproducibly increased the PTZ seizure threshold in CF1
mice that had experienced PILO-SE. The fact that there was no effect of triheptanoin in the
PTZ test in no SE mice suggests that triheptanoin feeding is particularly effective in mice
with spontaneous recurrent seizures.

Table 1 summarizes and compares the anticonvulsant profiles of triheptanoin and some of
the most commonly used antiepileptic drugs and the ketogenic diet. The table needs to be
interpreted with caution, because not all the specific conditions of animal epilepsy models
used could be taken into account. For example, PTZ models vary between different
laboratories and anticonvulsant efficacy of certain drugs is dependent on the PTZ
administration route and the rodent used (Löscher et al., 1991). Also, data on the
anticonvulsant effects of ketogenic diets in animal models can vary across laboratories
(Susan Masino, Adam Hartman personal communication (Hartman et al., 2007; Hartman et
al., 2008; Samala et al., 2008; Borges, 2008). To our knowledge, antiepileptic drug efficacy
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has not yet been described in the combination of the chronic pilocarpine model with a
second hit seizure susceptibility test in the mouse, but the same model has been
characterized in the rat (Blanco et al., 2009). The data by Blanco and colleagues suggest that
this model is a useful tool to identify treatments with efficacy in pharmacoresistant epilepsy,
because the model is resistant to the most commonly used antiepileptic drugs, valproate,
phenobarbital and phenytoin. In summary, the anticonvulsant profile of triheptanoin in the
context of a regular diet is different from that found with other established treatments for
epilepsy. This raises the hope that triheptanoin therapy may benefit patients with medically
refractory epilepsy. The next paragraphs discuss anaplerosis as triheptanoin’s possible
mechanism of anticonvulsant action and triheptanoin’s clinical potential.

3. Anaplerosis and triheptanoin
In aerobic metabolism, ATP production is largely dependent on the tricarboxylic acid (TCA)
cycle. A reduction in the levels of TCA cycle intermediates and subsequently acetyl-CoA
oxidation and energy production may be a contributor to seizures in “epileptic” brains.
Anaplerosis is the refilling of deficient metabolites of the TCA cycle (Kornberg, 1966),
involving carboxylation of pyruvate and propionyl-CoA (Fig. 1). In the brain, pyruvate
carboxylase is the main anaplerotic enzyme (Patel, 1974, Sonnewald and Rae, 2010). Two
other enzymes, phosphoenol-pyruvate carboxykinase and malic enzyme have the potential to
increase the levels of TCA intermediates oxaloacetate and malate, respectively. However,
both enzymes appear to only work in the decarboxylation direction in the brain (Patel,
1974). The anaplerotic pathway from propionyl-CoA via methylmalonyl-CoA to succinyl-
CoA has been well studied in peripheral tissues, such as skeletal muscle, liver and heart
(Fig. 1; e.g. Nuutinen et al., 1981; Martini et al., 2003; Reszko et al., 2003; Owen et al.,
2002). The enzymes involved are propionyl-CoA carboxylase (EC 6.4.1.3), methylmalonyl-
CoA epimerase (EC 5.1.99.1) and methylmalonyl-CoA mutase (EC 5.4.99.2). Propionyl-
CoA carboxylase is a biotin dependent enzyme consisting of a heteropolymer of α and β
subunits, encoded by two different genes PCCA and PCCB (Lamhonwah et al., 1986).
Functional mutations in either gene can result in propionic acidemia (MIM ID # 606054),
which in many patients appears to result in epileptiform activity with a high manifestation
rate of clinical seizures (Haberlandt et al., 2009). Anaplerotic molecules metabolized to
propionyl-CoA and propionyl-CoA carboxylase pathway include the branched chain amino
acids, isoleucine and valine, propionate, and molecules containing uneven fatty acids, such
as triheptanoin (Fig. 1).

Triheptanoin supplies the body with heptanoate which can either be oxidized to propionyl-
CoA directly or is metabolized by the liver to the “C5 ketones”, β-ketopentanoate and/or β-
hydroxypentanoate, which are released into the blood (Roe et al., 2002; Kinman et al., 2006;
Brunengraber and Roe, 2006; Roe and Mochel, 2006; Deng et al., 2009; Gu et al., 2010).
Heptanoate is likely to enter the brain via diffusion, while C5 ketones may cross the blood
brain barrier and enter cells of the brain via monocarboxylate transporters. Increasing
anaplerosis through the propionyl-CoA pathway has the potential to be a powerful new
approach to optimize TCA activity in the diseased brain, resulting in increased production of
reducing equivalents, oxidative phosphorylation and ATP and also amino acid
neurotransmitters. This concept is intriguing especially in the light of the hypothesis that
increased ATP and/or energy production may underlie the anticonvulsant mechanism of
action of the KD (DeVivo et al., 1978; Bough et al., 2006; Masino and Geiger, 2008;
Masino et al., 2009).
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5. Anaplerosis as a therapeutic approach for the treatment of epilepsy
There are several reasons why a therapeutic approach to increase anaplerosis in the brain
appears to be viable. It is plausible that TCA cycle intermediates are reduced in chronic
epilepsy, because α-ketoglutarate is the precursor for the neurotransmitters glutamate and
GABA and oxaloacetate for aspartate. Increased neurotransmission, that is, release of these
substances, such as during seizures, can reduce the levels of TCA cycle intermediates. The
following studies in three different epilepsy models during the chronic phase corroborate
this notion. In the hippocampal formation of lithium PILO-SE rats, levels of glutamate,
aspartate (indicative of the TCA intermediates α-ketoglutarate and oxaloacetate), N-acetyl
aspartate, adenosine triphosphate plus adenosine diphosphate and glutathione were
decreased (Melo et al., 2005). Glutamate concentrations were also decreased in the
hippocampi of rats after kainate-induced SE (Alvestad et al., 2008). In PILO-SE mice,
forebrain levels of malate and also propionyl-CoA were decreased (Willis et al., 2010).
These findings are consistent with our hypothesis that increased anaplerosis may protect
“epileptic” brains against seizures.

6. Anaplerosis via triheptanoin in the brain?
To obtain a measure of brain anaplerosis via triheptanoin, Willis et al., (2010) compared
steady state forebrain metabolite levels from mice with and without PILO-SE after three
weeks of feeding triheptanoin vs standard diet. In the chronic phase in PILO-SE mice,
triheptanoin feeding nearly restored brain levels of propionyl-CoA and increased methyl-
malonyl-CoA, suggesting that triheptanoin could be anaplerotic through this pathway in
mice with spontaneous seizures. However, there is still little evidence of substantial
anaplerosis through succinyl-CoA in the “normal” or “diseased” brain. Triheptanoin feeding
did not increase the forebrain steady state levels of TCA intermediates, aspartate, glutamate
or GABA in either PILO-SE or no SE mice, except that malate levels were increased by
25% in mice without PILO-SE. These steady state measurements of metabolites do not give
any indication of TCA cycle activity and anaplerotic flux. However, these findings are
consistent with low amounts of anaplerosis found when injecting [3-14C]-propionate into
mouse striatum and neocortex (Nguyen et al., 2007) and [U-13C]- isoleucine in rat brain
(Bak et al., 2009).

There is little known about the cell types in the brain that are involved in the anaplerotic
propionyl-CoA carboxylation pathway. The study by Nguyen and colleagues (2007) found
five times higher 14C specific activity in glutamine vs. glutamate pools after [3-14C]-
propionate injection. This indicates astrocytic metabolism of propionate, because glutamine
synthase occurs mainly in astrocytes. On the other hand, in the same study cultured rat
cerebellar granule cells exhibited more than three-fold higher activity of propionyl-CoA
carboxylase than cerebellar astrocytes. Using in situ hybridisation and
immunohistochemistry, expression of propionyl-CoA carboxylase alpha-subunit and
methylmalonyl-CoA mutase were found in in neurons in developing and adult rat brain
(Ballhausen et al., 2009). Expression was found in cerebellar granule cells, but could not be
detected in astroglia in vivo. This is a very interesting observation, in light of the fact that
pyruvate carboxylase is only found in astrocytes (Yu et al., 1983; Shank et al., 1985; Cesar
and Hamprecht, 1995), raising the possibility that anaplerosis via propionyl-CoA can
directly occur in neurons.

Many aspects of the anaplerotic propionyl-CoA carboxylation pathway in the brain remain
unknown and require further study. The characteristics of enzymatic reactions, such as the
conversion of propionyl-CoA via (S)-methylmalonyl-CoA and (R)-methylmalonyl-CoA to
succinyl-CoA have been largely investigated in other organs in the past. Little is known
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about the expression and regulation of the enzymes responsible, including specifically the β-
subunit of propionyl-CoA carboxylase and methylmalonyl-CoA epimerase, but also
methylmalonyl-CoA mutase (see Fig. 1). Of particular need is more knowledge about the
activity of this pathway in “normal” and “diseased” brains of rodent disease models and
human patients. Also, it is still unclear to what extent triheptanoin increases anaplerosis in
“normal” or “diseased” brains and if anaplerosis contributes to triheptanoin’s anticonvulsant
properties in the mouse. At this time, it is crucial for epilepsy researchers to gain a better
understanding of triheptanoin’s anticonvulsant mechanism in the quest to find new improved
therapeutic approaches for the treatment of epilepsy.

7. Triheptanoin as a new treatment for epilepsy
Despite the unknown mechanism of triheptanoin’s anticonvulsant action, the fact that
triheptanoin has been used safely in several animals and for various metabolic diseases in
children and adults should expedite the ethical and regulatory approval processes for a
clinical trial in medically refractory patients with epilepsy. In short-term experiments in rats,
triheptanoin has been administered intravenously and intraduodenally up to 40% of the
caloric requirement (Kinman et al., 2006; Gu et al., 2010). In metabolic studies, there were
no signs of metabolic perturbation of liver metabolism, ketoacidosis by C4 or C5 ketones, or
propionic acidemia. Similarly, short term intravenous infusion of β-hydroxypentanoate and
β-ketopentanoate in dogs did not lead to signs of propionic acidemia as determined by urine
analysis (Leclerc et al., 1995).

Roe and his colleagues have shown that triheptanoin can benefit patients of all ages with
different metabolic problems, including cardiomyopathy and rhabdomyolysis in very-long-
chain acyl-CoA dehydrogenase deficiency (Roe et al., 2002), pyruvate carboxylase
deficiency (Mochel et al., 2005), carnitine-palmitoyltransferase II deficiency (Roe et al.,
2008), and adult polyglucosan body disease (Roe et al., 2010). The vast experience obtained
with the ketogenic diet by researchers, clinicians, dieticians, patients and their families will
help to facilitate the investigation and development of triheptanoin as a new anticonvulsant
treatment. Chemically, triheptanoin resembles medium chain triglycerides, which have been
shown to be an effective treatment for certain children with refractory epilepsy in many
studies, including a randomised controlled clinical trial (Neal et al., 2008). The largest
concern for epilepsy patients is that triheptanoin may lead to propionic acidemia, which will
need to be carefully monitored employing organic acid urine analysis currently used to
detect inborn errors of metabolism in newborn infants. Another important issue is that
triheptanoin is contraindicated in patients with inborn errors of fatty acid oxidation, such as
medium-chain acyl-CoA dehydrogenase deficiency - MCAD, short-chain acyl-CoA
dehydrogenase deficiency - SCAD, short-chain-3 hydroxyacyl-CoA dehydrogenase
deficiency –SCHAD and HMG CoA (3-hydroxy-3-methyl-glutaryl-CoA) synthase
deficiency. Therefore, patients will need to be carefully screened for these disorders, taking
into account medical histories, blood acyl-carnitine profiles and urine organic acid analyses.
Future studies must address the anticonvulsant mechanism of action of triheptanoin and its
potential for clinical use.
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Fig. 1.
Anaplerotic pathways. Enzymes are marked by numbers. In the brain, the main anaplerotic
pathway is dependent on pyruvate carboxylase (1). The “reverse” reaction from malate is
catalysed by malic enzyme, 2). Phosphoenol-pyruvate carboxykinase (3) is considered to
work in the decarboyxlation direction. Anaplerosis via the propionyl-CoA carboxylation
pathway using branched chain amino acids (BCAA), heptanoate or the “C5 ketones“β-
ketopentanoate and β-hydroxypentanoate involves propionyl-CoA carboxylase (4),
methylmalonyl-CoA epimerase (5) and methylmalonyl-CoA mutase (6). Abbreviations:
BCAA – branched chain amino acids, α-KG – α-ketoglutarate, OAA- oxaloacetate, Co-A-
coenzyme A
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